sábado, 17 de noviembre de 2012

via lactea

La Via Láctea és una galaxia grande, espiral y puede tener unos 100.000 millones de estrellas, entre ellas, el Sol. En total mide unos 100.000 años luz de diámetro y tiene una masa de más de dos billones de veces la del Sol.
Cada 225 millones de años el Sistema Solar completa un giro alrededor del centro de la galaxia. Se mueve a unos 270 km. por segundo.No podemos ver el brillante centro porque se interponen materiales opacos, polvo cósmico y gases fríos, que no dejan pasar la luz. Se cree que contiene un poderoso agujero negro.

La Vía Láctea tiene forma de lente convexa. El núcleo tiene una zona central de forma elíptica y unos 8.000 años luz de diámetro. Las estrellas del núcleo están más agrupadas que las de los brazos. A su alrededor hay una nube de hidrógeno, algunas estrellas y cúmulos estelares.En noches serenas podemos ver una franja blanca que atraviesa el cielo de lado a lado, con muchas estrellas.


Si pudiéramos observar la Vía Láctea desde fuera de ella, veríamos el centro abultado, amarillo y brillante, con forma de balón de rugby, y un delgado disco de color azulado girando alrededor.

Del centro nacen cuatro brazos: Brazo de Perseo, Brazo de Orión, Brazo de Sagitario y Brazo de Cruz Centauro. Forman un disco que gira lentamente en espiral. En los brazos están las estrellas más jóvenes, las blancas y azules. También hay muchas nebulosas, donde se forman nuevas estrellas. El Brazo de Sagitario es el más brillante de todos.

La teoria de cuerdas

La teoría de cuerdas ha aparecido como uno de los candidatos más prometedores para ser una teoría microscópica de la gravedad. Y es infinitamente más ambiciosa: pretende ser una descripción completa, unificada, y consistente de la estructura fundamental de nuestro universo. (Por esta razón ocasionalmente se le otorga el arrogante título de "teoría de todo".)
La idea esencial detrás de la teoría de cuerdas es la siguiente: todas las diversas partículas "fundamentales" del modelo estándar son en realidad solo manifestaciones diferentes de un objeto básico: una cuerda. ¿Cómo puede ser esto? Bien, pues normalmente nos imaginaríamos que un electrón, por ejemplo, es un "puntito", sin estructura interna alguna. Un punto no puede hacer nada más que moverse. Pero, si la teoría de cuerdas es correcta, utilizando un "microscopio" muy potente nos daríamos cuenta que el electrón no es en realidad un punto, sino un pequeño "lazo", una cuerdita. Una cuerda puede hacer algo además de moverse--- puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, desde lejos, incapaces de discernir que se trata realmente de una cuerda, vemos un electrón. Pero si oscila de otra manera, entonces vemos un fotón, o un quark, o cualquier otra de las partículas del modelo estándar.

Es importante porque la teoría de cuerdas es  una idea tan sencilla que funciona, es posible obtener el modelo estándar a partir de una teoría de cuerdas. Pero es importante aclarar que, hasta el momento, no existe evidencia experimental alguna de que la teoría de cuerdas en sí sea la descripción correcta del mundo que nos rodea. Esto se debe principalmente al hecho de que la teoría de cuerdas está aún en etapa de desarrollo.

viernes, 16 de noviembre de 2012

El gran Colisionador de Hadrones


El Gran Colisionador de Hadrones, GCH (en inglés Large Hadron Collider, LHC) es un acelerador y colisionador de partículas ubicado en la Organización Europea para la Investigación Nuclear (CERN, sigla que corresponde su antiguo nombre en francés: Conseil Européen pour la Recherche Nucléaire), cerca de Ginebra, en la frontera franco-suiza. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeV de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.


Dentro del colisionador dos haces de protones son acelerados en sentidos opuestos hasta alcanzar el 99,99% de la velocidad de la luz, y se los hace chocar entre sí produciendo altísimas energías (aunque a escalas subatómicas) que permitirían simular algunos eventos ocurridos inmediatamente después del big bang.
El LHC es el acelerador de partículas más grande y energético del mundo. Usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés) y más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.

Una vez enfriado hasta su temperatura de funcionamiento, que es de 1,9 K (menos de 2 grados por encima del cero absoluto o −271,15 °C), los primeros haces de partículas fueron inyectados el 1 de agosto de 2008, y el primer intento para hacerlos circular por toda la trayectoria del colisionador se produjo el 10 de septiembre del año 2008. Aunque las primeras colisiones a alta energía en principio estuvieron previstas para el 21 de octubre de 2008, el experimento fue postergado debido a una avería que produjo la fuga del helio líquido que enfría uno de los imanes superconductores.

A fines de 2009 fue vuelto a poner en marcha, y el 30 de noviembre de ese año se convirtió en el acelerador de partículas más potente al conseguir energías de 1,18 TeV en sus haces, superando el récord anterior de 0,98 TeV establecido por el Tevatrón estadounidense. El 30 de marzo de 2010 las primeras colisiones de protones del LHC alcanzaron una energía de 7 TeV (al chocar dos haces de 3,5 TeV cada uno) lo que significó un nuevo récord para este tipo de ensayos. El colisionador funcionará a medio rendimiento durante dos años, al cabo de los cuales se proyecta llevarlo a su potencia máxima de 14 TeV.

Teóricamente se espera que este instrumento permita confirmar la existencia de la partícula conocida como bosón de Higgs, a veces llamada "partícula de Dios" o “partícula de la masa”. La observación de esta partícula confirmaría las predicciones y "enlaces perdidos" del Modelo Estándar de la física, pudiéndose explicar cómo las otras partículas elementales adquieren propiedades como la masa.

Diseño del CMS collaboration.Verificar la existencia del bosón de Higgs sería un paso significativo en la búsqueda de una teoría de la gran unificación, que pretende relacionar tres de las cuatro fuerzas fundamentales conocidas, quedando fuera de ella únicamente la gravedad. Además este bosón podría explicar por qué la gravedad es tan débil comparada con las otras tres fuerzas. Junto al bosón de Higgs también podrían producirse otras nuevas partículas que fueron predichas teóricamente, y para las que se ha planificado su búsqueda, como los strangelets, los micro agujeros negros, el monopolo magnético o las partículas supersimétricas.

Modelo Inflacionario

Es un conjunto de propuestas en el marco de la física teórica para explicar la expansión ultrarrápida del universo en los instantes iniciales y resolver el llamado problema del horizonte.
La inflación fue por primera vez propuesta por el físico y cosmólogo estadounidense Alan Guth en 1981 e independientemente Andrei Linde,y Andreas Albrecht junto con Paul Steinhardt le dieron su forma moderna.
Aunque el mecanismo responsable detallado de la física de partículas para la inflación se desconoce, la imagen básica proporciona un número de predicciones que se han confirmado por pruebas observacionales. La inflación es actualmente considerada como parte del modelo cosmológico estándar de Big Bang caliente. La partícula elemental o campo hipotético que se piensa que es responsable de la inflación es llamada inflatón.
La inflación sugiere que hubo un periodo de expansión exponencial en el Universo muy pre-primigenio. La expansión es exponencial porque la distancia entre dos observadores fijos se incrementa exponencialmente, debido a la métrica de expansión del Universo (un espacio-tiempo con esta propiedad es llamado un espacio de Sitter). Las condiciones físicas desde un momento hasta el siguiente son estables: la tasa de expansión, dada por la constante de Hubble, es casi constante, lo que lleva a altos niveles de simetría. La inflación es a menudo conocida como un periodo de expansión acelerada porque la distancia entre dos observadores fijos se incrementa a una tasa acelerante cuando se mueven alejándose. (Sin embargo, esto no significa que el parámetro de Hubble se esté incrementando, ver parámetro de deceleración).

jueves, 15 de noviembre de 2012

Objeto peculiar

Objeto peculiar: Radiogalaxias.

Son grandes sistemas estelares que en una observación óptica no muestran fenómenos peculiares, mientras que observados a través de radiotelescopios se revelan cómo potentes fuentes de ondas de radio, hasta el punto de superar en millones de veces la potencia de las señales emitidas por nuestra Galaxia.
Parece que esta enorme emisión de radio tiene su origen en dos nubes de hidrógeno situadas a los lados y por fuera de la mayoría de las radiogalaxias.
De acuerdo con una teoría, intensos haces de electrones serían expulsados desde los núcleos de las radiogalaxias hacia las nubes de gas externas, donde se originaría una radiación del tipo Sincrotrón.
En el centro de algunas radiogalaxias se ha observado ópticamente un núcleo luminoso tan brillante como para emitir mucha más luz que el resto de la propia galaxia. Este núcleo, que muestra un fuerte desplazamiento de las rayas espectrales hacia el rojo, evidenciando una elevadísima fuga del objeto hacia los confines del Universo, ha sido bautizado por los astrónomos como Quásar.

medio interestalar


El medio interestelar es el contenido de materia y energía que existe entre las estrellas dentro de una galaxia. Las estrellas se forman dentro de regiones frías de medio interestelar, al tiempo que éstas reponen materia interestelar y energía a través de los vientos estelares y las explosiones de supernova. Esta interacción entre estrellas y materia interestelar fija el porcentaje en que una galaxia reduce su contenido gaseoso y por tanto determina la vida de la formación estelaractiva.
El medio interestelar está formado por un plasma extremadamente diluido para los estándares terrestres. La densidad de materia va desde un exiguo 1.5·10-26 g cm-3 en las zonas más calientes hasta un 2·10-18 g cm-3 en las más densas. Su densidad media es de 2.7·10-24 g cm-3, lo que equivale a un átomo de hidrógeno por centímetro cúbico aproximadamente. Dicho medio lo conforman tres constituyentes básicos: materia ordinaria, rayos cósmicos y campos magnéticos.
El medio en sí es una mezcla heterogénea de átomos, moléculas, polvo y rayos cósmicos envueltos en un campo magnético. La materia está compuesta a su vez de alrededor de un 99% en masa por partículas de gas y un 1% por polvo

miércoles, 14 de noviembre de 2012

Teoria del Big bang

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.
Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas
Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.
Uno de los problemas sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).
Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.

Cosmologia

Cosmología, es el estudio del universo en su conjunto, en el que se incluyen teorías sobre su origen, su evolución, su estructura a gran escala y su futuro.
Sus inicios son meramente filosóficos y religiosos. De hecho son éstas las primeras ramas de esta ciencia que se desarrollan.
Aunque no está establecida una fecha exacta, la rama más joven de la cosmología nace a principios del siglo XX. Es la cosmología física que se apoya sobre todo en la teoría general de la relatividad publicada por Einstein en 1915. Los descubrimientos sobre la curvatura del espacio-tiempo, el encontrar que no existía una única Galaxia sino una infinidad de ellas, la teoría del Big Bang (o la gran explosión) y muchísimas evidencias más hacen que los estudiosos necesiten plantear una solución al viejo problema del lugar que ocupa el ser humano en el Universo y tratan de resolverlo básicamente con modelos matemáticos que conllevan a la aparición de muchas teorías sobre el origen del Universo.

martes, 13 de noviembre de 2012

Cuásares y galaxias


Los Cuásares son objetos lejanos que emiten grandes cantidades de energía, con radiaciones similares a las de las estrellas. Los cuásares son centenares de miles de millones de veces más brillantes que las estrellas. Posiblemente, son agujeros negros que emiten intensa radiación cuando capturan estrellas o gas interestelar.
Se han descubierto cuásares a 12.000 millones de años luz de la Tierra.
Lo más espectacular de los cuasares no es su lejanía, sino que puedan ser visibles. Un cuasar deber ser tan brillante como 1.000 galaxias juntas para que pueda aparecer como una débil estrella, si se encuentra a varios miles de millones de años luz. El brillo de loscuásaress oscila con periodos de unos meses, por tanto, su tamaño debe ser menor que la distancia que recorre la luz en ese tiempo.
Al principio, los astrónomos no veían ninguna relación entre los cuasares y las galaxias, pero la brecha entre estos dos tipos de objetos cósmicos se ha ido llenando poco a poco al descubrirse galaxias cuyos núcleos presentan semejanzas con los cuasares. Hoy en día, se piensa que los cuasares son los núcleos de galaxias muy jóvenes, y que la actividad en el núcleo de una galaxia disminuye con el tiempo, aunque no desaparece del todo.
Los cuásares fueron descubiertos a principios de 1960 cuando radioastrónomos identificaron una estrella pequeña designada 3C 48 que emitía poderosas ondas de radio. Cuando obtuvieron el espectro de la estrella, encontraron algo completamente inesperado: el espectro era plano con varias, inesperadas y totalmente inexplicables, líneas de emisión.Hoy, sabemos que los cuásares son galaxias con núcleos extremadamente energéticos. La cantidad de radiación emitida por tales núcleos opaca la luz del resto de la galaxia, de forma que sólo técnicas de observación especiales pueden revelar la existencia del resto de la galaxia. El núcleo explica por qué los cuásares se parecen a estrellas - todo lo que podemos ver es el motor central brillante-.
Aunque el núcleo de un cuásar es extremadamente pequeño - sólo del tamaño del Sistema Solar- emite hasta 100 veces más radiación que una galaxia entera. 



Las galaxias son agrupaciones de miles de millones de estrellas. Nuestra propia galaxia, es un ejemplo típico. Estrellas, gas y polvo interestelar orbitan alrededor del centro de la galaxia debido a la atracción gravitatoria de todas las demás estrellas. Cuando una estrella alcanza el final de su evolución, puede devolver mucho gas al medio interestelar que será la fuente para una nueva generación de estrellas. Podemos imaginar a las galaxias como sistemas que transforman gas en estrellas y éstas nuevamente a gas.
Cuando miramos una galaxia, la luz que vemos viene de dos fuentes. Primero, vemos luz de sus miles de millones de estrellas; puesto que muchas galaxias están muy lejanas, no vemos estrellas individuales - sólo la luz difusa combinada de todas. Segundo, vemos luz fluorescente emitida por el gas ionizado por las estrellas luminosas calientes. Estas nubes de gas resplandeciente marcan los sitios donde nacen nuevas estrellas .Comparadas con el Sistema Solar, las galaxias son inmensas.  la forma de una galaxia nos habla de las condiciones en que se formó, salvo que la galaxia haya sufrido una colisión.
Mientras que las estrellas dentro de una galaxia están separadas por distancias muy grandes comparadas con sus tamaños, las galaxias están separadas de sus vecinas más cercanas por distancias que son mucho más pequeñas cuando se comparan con las distancias entre las estrellas dentro de las galaxias
Debido a que las estrellas en las galaxias están tan lejos, una señal de una galaxia es generalmente muy débil. Desde el patio posterior de su casa es difícil ver galaxias a simple vista, incluso las más cercanas.Las galaxias más brillantes y grandes son fáciles de identificar: son señales de luz con una gran variedad de formas, desde elípticas a espirales. Las mucho más numerosas galaxias débiles son más difíciles de encontrar.

nebulosa planetaria

Una nebulosa planetaria es en realidad una estrella que ha llegado al fin de su propia existencia, que lanza hacia afuera las capas periféricas de su atmósfera, las cuales adquieren una característica configuración de anillo.
El objeto celeste más famoso de este tipo está representado por la nebulosa de anillo de la Lira.
Las estructuras de este tipo son muy frecuentes en el Universo: cálculos estadísticos indican que deben sumar unas cuantas decenas de miles, sin embargo sólo unas mil, por lo general concentradas hacia el núcleo de nuestra Galaxia, son bien conocidas.
Se ha podido establecer que la parte central de las nebulosas planetarias está formada por el núcleo de la primitiva estrella a temperaturas muy elevadas, entre 30.000 y 150.000 grados.
En estas condiciones el astro emite sobre todo rayos ultravioletas de manera que, observada en luz normal, la parte central se presenta como una débil estrellita. El anillo periférico está en cambio formado por hidrógeno en rápida expansión. El diámetro medio de los anillos de las nebulosas planetarias es aproximadamente de unas 40.000 UA. Las nebulosas planetarias resultan objetos muy espectaculares si se observan con un telescopio de media o gran potencia.

lunes, 12 de noviembre de 2012

Estrellas variables

Las estrellas variables son estrellas que experimentan una variación en su brillo en el transcurso del tiempo. Algunas son muy conocidas y son el "prototipo" de una clase de variables, como Algol (Beta Persei), algólidas, Mira(Omicron Ceti), tipo Mira, Delta Cephei, cefeidas.
La mayoría de las estrellas tiene una luminosidad prácticamente constante. El Sol, nuestra estrella más cercana, es un buen ejemplo de esos astros que experimentan poca variación (usualmente sólo un 0.1% dentro de su ciclo solar, que dura 11 años). Sin embargo, muchas otras estrellas experimentan variaciones significativas de luminosidad, por lo cual son conocidas como estrellas variables.
Las estrellas variables de una constelación se denominan por el orden de descubrimiento si no tienen nombre propio. Si no es así se nombrarán con el alfabeto desde la R a Z, y si hay más se colocará doble letra: RR, RS, RT... ZZ. Si estas resultaran cortas, se haría el procedimiento de doble letra desde a la A a P, eliminando J. Esto hace un total de 334 estrellas, si hubiera más, se llamaría V, seguido del número de
descubrimiento y el genitivo de la constelación.
Éstas pueden ser intrínsecas o extrínsecas.



  • Estrellas variables intrínsecas: son aquellas en las que la variabilidad es causada por cambios en las propiedades físicas de las propias estrellas. Esta categoría puede dividirse en tres subgrupos:
    • Variables pulsantes: aquellas cuyo radio se expande y se contrae como parte de su proceso evolutivo natural.
    • Variables eruptivas: aquellas que experimentan erupciones en sus superficies, como llamaradas o eyecciones de materia.
    • Variables cataclísmicas: aquellas que experimentan algún cambio cataclísmico de sus propiedades físicas, como las novas y las supernovas.

  • Estrellas variables extrínsecas: son aquellas en las cuales la variabilidad es causada por propiedades externas, como la rotación o eclipses. Existen dos subgrupos dentro de esta categoría:
    • Binarias eclipsantes: aquellas en las cuales, según se ven desde la Tierra, una estrella del par eclipsa a la otra ocasionalmente debido a su traslaciones orbitales.
    • Variables rotantes: aquellas cuya variabilidad es causada por algún fenómeno relacionado con su propia rotación. Se dan casos de estrellas con manchas solares de proporciones extremas, que afectan su brillo aparente, o estrellas que, por tener una velocidad de rotación muy elevada, tienen forma elipsoidal.
Estos subgrupos se pueden dividir en varios tipos más específicos, los cuales generalmente obtienen su designación del nombre de la estrella prototípica.

Estrellas de neutrones y agujeros negros

Una estrella de neutrones es un remanente estelar dejado por una estrella supergigante después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. La masa original de la supernova debe ser mayor a 9 ó 10 masas solares y menor que un cierto valor que depende de la metalicidad. Las estrellas con masas menores a 9-10 masas solares evolucionan en enanas blancas envueltas, al menos por un tiempo, por nebulosidades (nebulosas planetarias), mientras que las de masas mayores evolucionan en agujeros negros.
Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares y un radio de entre 20 y 10 km (análogamente a lo que ocurre con las enanas blancas, a mayor masa corresponde un menor radio).


La teoría indica que los objetos llamados agujeros negros se formarían cuando una cantidad apreciable de materia cósmica se acumula en un volumen extremadamente reducido del espacio; por ejemplo, luego del colapso de una estrella.
En un agujero negro, la fuerza de atracción que ejerce su gravedad es tan intensa que la materia se comprime hasta límites increíbles; al adquirir un estado tan denso, la gravedad resulta tan elevada que ni la luz puede escapar de él. Por esta causa el objeto no será observable: será “negro”, a decir por los astrónomos. La denominación de “agujero” surge al designar al cuerpo del que no puede escapar nada a causa de su gravedad y que parece absorber toda la materia circundante.
Se ha calculado que las dimensiones de un agujero negro no superarían 1 km de diámetro, y que le correspondería una cantidad de masa entre una similar a la de la Tierra y masas equivalentes a varios miles de soles.
Los astrónomos han estimado que la materia atraída hacia un agujero negro será fuertemente acelerada por su gravedad y, por lo tanto, las partículas que la componen entrarán en un estado de continua colisión mutua, cayendo a muy grandes velocidades en una curva de forma espiral. Por consiguiente, en los alrededores de un agujero negro se creará un violento torbellino, en el cual la materia trata de penetrar en un muy pequeño volumen del espacio.
Hasta el momento no existe ninguna prueba concluyente de la existencia de agujeros negros. Por ser invisibles, sólo podrían ser detectados a través de sus efectos gravitacionales sobre otros cuerpos celestes, o bien en el caso singular de que se halle junto a otra estrella formando un sistema doble. Existe un sistema binario en la constelación del Cisne, donde se ha observado una potente fuente de Rayos X; aparentemente es de una de las dos componentes del sistema, justamente aquella que no es visible. Los datos recogidos de un sistema doble sugieren que un enigmático objeto (que sería muy pequeño), tendría masa suficientemente grande como para ser identificado como serio candidato a agujero negro.

domingo, 11 de noviembre de 2012

Agrupaciones estelares


Las agrupaciones estelares son grupos de estrellas ligadas entre sí por la gravedad. A veces también las liga su origen


Tipos de agrupaciones estelares
  • Estrellas ligadas: Las estrellas están normalmente ligadas gravitacionalmente unas con otras formando sistemas binarios, ternarios o agrupaciones mayores. La mayor parte de las estrellas forman parte de sistemas binarios, otras se agrupan en grandes concentraciones que van desde las decenas hasta los centenares de miles o incluso millones de estrellas. Los cúmulos, como así se llaman estas concentraciones, son fruto de grandes brotes de formación estelar.
  • Estrellas aisladas: No todas mantienen esos lazos gravitatorios, otras como el Sol, viajan solitarias, habiéndose separado hace mucho de la agrupación estelar en la que se formaron. Estas estrellas aisladas sienten el efecto del campo gravitatorio global constituido por la superposición de los campos del total de objetos de la galaxia, entre agujeros negros, estrellas, objetos compactos y gas interestelar.
  • Sistemas extrasolares: En tiempos recientes se han descubierto también otros sistemas planetarios. Se conocen alrededor de 120 estrellas con compañeros subestelares con masas en torno a 1-10 veces la masa de Júpiter. Son conocidos como planetas extrasolares aunque en los más grandes se discute si podrían ser, tal vez, enanas marrones.
  • Distribución estelar: Las estrellas no están distribuidas uniformemente en el Universo a pesar de lo que pueda parecer a simple vista. En realidad están agrupadas en Galaxias. Una Galaxia espiral típica (como la nuestra) contiene cientos de miles de millones estrellas agrupadas, la mayoría, en el estrecho plano galáctico. Nuestro cielo nocturno aparece homogéneo a simple vista porque no vemos más allá de una región muy localizada del plano galáctico.

Sistemas estelares

Un sistema estelar (binario o múltiple) es la agrupación de dos o más estrellas que orbitan en torno a un centro de gravedad común,ligadas por lo tanto por la fuerza de gravedad. Un gran número de estrellas vinculadas por la gravitación se denomina un cúmulo estelar o una galaxia, si bien, en un sentido extenso ambos son sistemas estelares.

  • Sistemas estelares binarios:
Un sistema estelar de dos estrellas es conocido como estrella binaria, o estrella doble. Si no hay fuerzas de marea, ni perturbaciones producidas por otras fuerzas, ni transferencias de masa de una estrella a la otra, se trata de un sistema estable, y las dos estrellas trazan una órbita elíptica en torno al centro de masa del sistema de forma indefinida.
  • Sistemas estelares múltiples:
Un sistema estelar con tres estrellas es una estrella triple, y se pueden percibir sistemas más numerosos. Los sistemas con tres o más estrellas pueden ser inestables, y uno de los acontecimientos finales puede ser la expulsión de una o más estrellas del sistema.
Una de las formas en las que los sistemas múltiples estelares pueden sobrevivir durante un largo plazo es cuando estrellas binarias forman a su vez sistemas binarios cuyos miembros se encuentran a mucha proximidad. En este caso, las dos estrellas cercanas se comportan como una única estrella en los extremos gravitacionales, y el sistema es estable.

sábado, 10 de noviembre de 2012

Las estrellas

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia.Son objetos de masas enormes comprendidas entre 0,081 y 120-2002 masas solares (Msol). Los objetos de masa inferior se llaman enanas marrones mientras que las estrellas de masa superior parecen no existir debido al límite de Eddington. Su luminosidad también tiene un rango muy amplio que abarca entre una diezmilésima parte y tres millones de veces la luminosidad del Sol.

Mediante la aplicacion de las leyes de la radiacion es posible calcular la temperatura superficial de las estrellas, en particular empleando la ley de Planck y dos leyes derivadas de esta última: la ley de Wien y la de Stefan-Boltzwann, ambas teoricamente fáciles de aplicar pero con grandes dificultades prácticas

Una estrella se divide en núcleo, manto y atmósfera. En el núcleo es donde se producen las reacciones nucleares que generan su energía. El manto transporta dicha energía hacia la superficie y según como la transporte, por Convección o por Radiación, se dividirá en dos zonas: radiante y convectiva. Finalmente, la atmósfera es la parte más superficial de las estrellas y la única que es visible. Se divide en Cromosfera, Fotosfera y Corona Solar.

La atmósfera estelar es la zona más fría de las estrellas y en ellas se producen los fenómenos de eyección de materia. Pero en la corona, supone una excepción a lo dicho ya que la tempera vuelve a aumentar hasta llegar al millón de grados por lo menos. La temperatura es engañosa, en realidad esta capa es muy poco densa y está formada por Partículas Ionizadas altamente aceleradas por el Campo Magnético de la estrella. Sus grandes velocidades les confieren a esas partículas altas temperaturas.

La vida de las estrellas se mide en millones y en miles de millones de años, por lo tanto, es evidente que el corto período de vida de un humano no le permite cuantificar la dimensión de la evolución de ellas. Ni siquiera el primer ser con características morfológicas e intelectuales de hombre, aún si existiera en el presente, podría testificar los cambios producidos en las estrellas.

Satelites

Satélite artificial

Un satélite artificial es una nave espacial fabricada en la Tierra o en otro lugar del espacio y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas u objetos naturales del espacio, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial. Los satélites están equipados con transmisores de radio para enviar datos, con radiorreceptores y circuitos electrónicos de almacenamiento de datos, y con equipos de control como sistemas de radar y de guía para el seguimiento de estrellas. Los satélites se colocan en órbita mediante cohetes de etapas múltiples, también denominados lanzadores. 

Tipos de satélites artificiales

  • Satélites astronómicos, son satélites utilizados para la observación de planetas y otros objetos astronómicos.
  • Satélites de comunicaciones, son los empleados para realizar telecomunicación. 
  • Satélites de navegación, utilizan señales para conocer la posición exacta del receptor en la tierra.
  • Satélites de reconocimiento:son de observación o comunicaciones utilizados por organizaciones de inteligencia. 
  • Satélites de observación terrestre, son utilizados para la observación del medio ambiente, meteorología, cartografía sin fines militares.
  • Estaciones espaciales, son estructuras diseñadas para que los seres humanos puedan vivir en el espacio exterior.

Satelites naturales

Se denomina satélite natural a cualquier objeto que órbita alrededor de un planeta. Generalmente el satélite es mucho más pequeño y acompaña al planeta en su traslación alrededor de la Estrella que órbita  El término satélite natural se contrapone al de satélite artificial, siendo este último, un objeto que gira en torno a la Tierra, la Luna o algunos planetas y que ha sido fabricado por el hombre

Clasificación de los satélites naturales

En el Sistema Solar se puede clasificar los satélites según:
  • Satélites pastores: Cuando mantienen algún anillo de Júpiter, Saturno, Urano o Neptuno en su lugar.
  • Satélites troyanos: Cuando un planeta y un satélite importante tienen en los puntos de Lagrange L4 y L5 otros satélites.
  • Satélites coorbitales: Cuando giran en la misma órbita. Los satélites troyanos son coorbitales.
  • Satélites asteroidales: Algunos asteroides tienen satélites a su alrededor como (243) Ida y su satélite Dactyl. 

jueves, 8 de noviembre de 2012

Cometas

Los cometas son cuerpos celestes constituidos por hielo y rocas que orbitan el Sol siguiendo diferentes trayectorias elípticas, parabólicas o hiperbólicas. 
A diferencia de los asteroides, los cometas son cuerpos sólidos compuestos de materiales que se subliman en las cercanías del Sol.
Los dos cometas más famosos fueron COMETA HALLEY. Y el COMETA HALLE-BOPP.
El cometa Halley, oficialmente denominado 1P/Halley, es un cometa grande y brillante que orbita alrededor del Sol cada 75-76 años en promedio, aunque su período orbital puede oscilar entre 74 y 79 años.2 Es uno de los mejor conocidos y más brillantes cometas de "periodo corto" del cinturón de Kuiper. Halley es el único de período corto que es visible a simple vista desde la Tierra, y también el único cometa a simple vista que quizás aparece dos veces en una vida humana, por lo que del mismo existen muchas referencias de sus apariciones, siendo el mejor documentado.
El regreso del Halley al interior del Sistema Solar fue observado y grabado por astrónomos desde por lo menos el año 240 a. e. c. Claros documentos de las apariciones del cometa fueron hechas por los cronistas chinos, babilónicos y los europeos medievales, pero no fueron reconocidas como reapariciones del mismo objeto en ese entonces. El período orbital del cometa fue determinado por primera vez en 1705 por el astrónomo inglés Edmond Halley, ahora nombre designado para el astro. Se le observó por última vez en el año 1986 en las cercanías de la órbita de la Tierra, y su próxima aparición ocurrirá a mediados de 2061.


El cometa Halley en 1986.

Asteroides

  • Un asteroide es un cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que órbita alrededor del Sol en una órbita interior a la de Neptuno. Vistos desde la Tierra, los asteroides tienen aspecto de estrellas. 
  • Los asteroides cercanos a la Tierra son Asteroides Amor, los asteroides Apolo y los asteroides Atón.
  • Los asteroides del cinturón se formaron según una teoría, a partir de la destrucción de un planeta. Habría que juntar 2.500 veces los asteroides conocidos para tener la más de la Tierra. Según otra teoría  un grupo de unos 50 asteroides se formaron con el resto del Sistema Solar.Después las colisiones lo han ido fragmentando.
  • El nuevo negocio consiste en sacar oro de los asteroides. Su otro propósito, además de sacar oro de los asteroides, es crear un depósito de combustible en el espacio para 2020.
  • PHA significa Asteroide potencialmente peligroso 
  • hasta el 2004 Se encontraron 2 asteroides Apoheles 


Planetas terrestres


Es un planeta formado principalmente por silicatos. Los planetas terrestres son sustancialmente diferentes de los planetas gigantes gaseosos, los cuales puede que no tengan una superficie sólida y están constituidos principalmente por gases tales como hidrógeno, helio y agua en diversos estados de agregación.
Un planeta esta conformado por un núcleo metálico, mayoritariamente férreo, y un manto de silicatos que lo rodea. 

El planeta tierra es un planeta del Sistema Solar que gira alrededor de su estrella en la tercera órbita más interna. Es el más denso y el quinto mayor de los ocho planetas del Sistema Solar. También es el mayor de los cuatro terrestres. La Tierra se formó hace aproximadamente 4567 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.
En la actualidad, la Tierra completa una órbita alrededor del Sol cada vez que realiza 366.26 giros sobre su eje, el cual es equivalente a 365.26 días solar eso a un año sideral.

El planeta Marte Es el cuarto planeta del Sistema Solar. Llamado así por el dios de la guerra de la mitología romana Marte, recibe a veces el apodo de Planeta rojo debido a la apariencia rojiza que le confiere el óxido de hierro que domina su superficie.
Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como laTierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra.
Aunque en apariencia podría parecer un planeta muerto, no lo es. Sus campos de dunas siguen siendo mecidos por el viento marciano, sus casquetes polares cambian con las estaciones e incluso parece que hay algunos pequeños flujos estacionales de agua. Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. 
Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6794 km y polar de 6750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01, tres veces mayor que el de la Tierra.